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It has been reported that skin aging is associated with a downregulation in collagen synthesis and an elevation
in matrix metalloproteinase (MMP) expression. This study investigated the potential of light-emitting diode
(LED) treatments with a 660 nm sequentially pulsed illumination formula in the photobiomodulation of these
molecules. Histological and biochemical changes were first evaluated in a tissue-engineered Human
Reconstructed Skin (HRS) model after 11 sham or LED light treatments. LED effects were then assessed in
aged/photoaged individuals in a split-face single-blinded study. Results yielded a mean percent difference
between LED-treated and non-LED-treated HRS of 31% in levels of type-1 procollagen and of �18% in MMP-1.
No histological changes were observed. Furthermore, profilometry quantification revealed that more than 90%
of individuals showed a reduction in rhytid depth and surface roughness, and, via a blinded clinical assessment,
that 87% experienced a reduction in the Fitzpatrick wrinkling severity score after 12 LED treatments. No adverse
events or downtime were reported. Our study showed that LED therapy reversed collagen downregulation and
MMP-1 upregulation. This could explain the improvements in skin appearance observed in LED-treated
individuals. These findings suggest that LED at 660 nm is a safe and effective collagen-enhancement strategy.
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INTRODUCTION
Skin aging, intrinsic and extrinsic, is associated with morpho-
logical changes, including rhytids, furrows, and telangiecta-
sia (Kang et al., 2001; Fisher et al., 2002). It has been reported
that collagen synthesis is reduced and interstitial matrix
metalloproteinases (MMP-1), the collagenase involved in
normal turnover of skin collagen, are upregulated in aged
skin (Fligiel et al., 2003; Fisher et al., 2008; Varani et al.,
2004). Hence, a possible strategy for treating and preventing
clinical manifestations of skin aging is the restoration of
collagen deficiency by the induction of new collagen
synthesis and reduction of MMP-1.

It has been shown that light-emitting diode (LED) therapy,
a nonthermal noninvasive treatment, can trigger natural

intracellular photobiochemical reactions (Karu and Kolyakov,
2005; Karu et al., 2005a, b; Hamblin and Demidova, 2006;
Barolet, 2008). A number of clinical studies provide evidence
of the effectiveness of LED therapy in photorejuvenation
using a variety of LED light sources (Weiss et al., 2004; Bhat
et al., 2005; Russell et al., 2005; Weiss et al., 2005; Goldberg
et al., 2006; Baez and Reilly, 2007; Lee et al., 2007). An
improvement in skin appearance in aged/photoaged indivi-
duals has been documented after full-face or split-face serial
treatments with yellow (590 nm), red (630, 633 nm), or red in
combination with infrared (830 nm) light based on profilo-
metry quantification, clinical assessment of digital photo-
graphs, and patient reported outcomes. A correlation of
clinical effects with further analysis for basic mechanisms
was examined in two of these studies. In Weiss et al. (2005),
after a regimen of eight treatments delivered over 4 weeks
with LED 590 nm, staining with anti-collagen I antibodies
showed a 28% (range of 10–70%) average increase in density,
whereas staining with anti-MMP-1 showed an average
reduction of �4% (range of �2 to �40%). In the Lee et al.
study, participants were randomly divided into four groups
treated with either 830 nm alone, 633 nm alone, a combina-
tion of 830 and 633 nm, or a sham treatment light, two times
a week for 4 weeks. In the treatment groups, a significant
increase in the amount of collagen was observed by
histological evaluation with standard preparation with
hematoxylin and eosin stain. This finding was confirmed by
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the Masson–trichrome stain for collagen. In the immunohisto-
chemical staining results, no significant changes in MMP-1 or
MMP-2 were observed between the baseline and 2 weeks
posttreatment specimens in all groups. Other models have also
been used to investigate LED-based effects. Collagen increase
after LED treatment has been documented in fibroblast cultures
(McDaniel et al., 2002; Huang et al., 2007), in third-degree
burn wound-healing models (Meireles et al., 2008a, b), and in
human blister fluids (Barolet et al., 2005). However, con-
current MMP determinations after LED treatment were not
assessed in these experiments.

In this study, we opted for an innovative approach
involving a stable in vitro model replicating a real-life LED
clinical application, and then sought to explore clinical
correlates of these effects in humans. The 660 nm LED light
source delivered in a sequential pulsing mode was used as it
is a deep penetrating well-absorbed wavelength that falls into
the absorption peaks of cytochrome c oxidase, the chromo-
phore thought to be responsible for LED effects (Karu and
Kolyakov, 2005; Karu et al., 2005a, b).

A 3-D model of tissue-engineered Human Reconstructed
Skin (HRS) (Michel et al., 1999) was used to initially
investigate the potential of 660 nm LED in modulating collagen
and MMP-1. The HRS model offers a variety of advantages
over other in vitro and preclinical models. HRS samples are
produced exclusively from human fibroblasts and keratino-
cytes and do not contain any synthetic material. This model
emulates skin as a complex tissue composed of two different
compartments, the continuously renewing epidermis made up
mostly of keratinocytes and the underlying dermal matrix with
fibroblasts as its major cellular components. These compart-
ments are tightly interconnected allowing for paracrine mutual
interactions, which are essential for epidermal growth,
differentiation, and tissue homeostasis. This HRS model
represents a unique opportunity to test biological changes
after LED treatment over an extended time frame on age- and
gender-defined skin, much like a clinical setting. Eleven
consecutive LED treatments carried out over 4 weeks were
conducted on HRS and compared with the untreated control
specimens for type I procollagen and MMP-1 production. The
clinical study was then conducted to corroborate the in vitro
experiment. A group of chronologically aged/photoaged
individuals received 12 LED treatments or a sham light control
over a 1-month period (split-face study). Clinical improve-
ments were assessed with an in vivo 3-D microtopography
quantitative measurement (PRIMOS readings) and a qualitative
clinical assessment of digital photographs by blinded medical
observers. Our results supported the hypothesis that LED
treatments could upregulate collagen and downregulate
MMP-1 in vitro, and thus lead to improvements in skin
appearance observed in the LED-treated side in humans.

RESULTS
LED-induced modulations in type I procollagen and MMP-1
production of human reconstructed skin

Type I procollagen and MMP-1 production was assessed in the
supernatants of HRS from individuals with aged/photoaged skin

in response to each of the 11 LED treatments (T1–T11)
conducted over a 1-month period. An increase in type I
procollagen production with a concomitant decrease in
MMP-1 levels was observed in the LED-treated samples
when compared with that in untreated samples. The latter
effects were found to be cyclic, with alternating high and low
levels observed in response to consecutive LED treatments
The mean percent difference between LED-treated and
untreated HRS specimens across repeated treatments was
31% (range of 5–81%) for type I procollagen levels and �18%
(range of �3 to �27%) for MMP-1 levels (Figure 1). Cohen’s d
effect size was in the medium-to-large range at the various
time points for both type-1 procollagen and MMP-1
measurements, with the exception of T9 (dp0.2) (see Table
below Figure 1).

Histological assessments on HRS

Morphological changes after the last LED treatment were
assessed using Masson’s trichrome and immunofluorescent
staining. Masson staining of reconstructed skin showed no
histological difference in the extracellular matrix (same
dermal thickness) in LED-treated compared with untreated
control samples (data not shown). Typical results from
an LED-treated HRS are depicted in Figure 2a (HRS38).
Immunofluorescent staining of HRS yielded no difference in
the amounts of type I procollagen (same band thickness)
between the LED-treated and untreated specimens (data
not shown). A representative fluorescent immunostaining
pattern after LED treatment for type I procollagen is displayed
in Figure 2b. Overall, after LED treatments, the dermal layer
exhibited a dense well-organized collagenous connective
tissue material, overlaid with a well-stratified epidermis,
presenting an intact stratum basale.
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Figure 1. Increases in type I procollagen and concurrent reduction in

MMP-1 levels in HRS after LED treatment. A cyclic pattern of alternating

highs and lows was observed in response to the 11 consecutive treatments

(T1–T11) for type 1 procollagen and MMP levels. Values are percent

difference±SEM (n¼9) between treated and untreated control HRS samples

in mean levels of type I procollagen and MMP-1 assessed in the supernatants

after each treatment. Table shows Cohen’s d for type 1 procollagen and

MMP-1 for each time point.
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Profilometry quantification of improvements in skin appearance
To assess the potential of 660 nm LED light in improving the
appearance of aged/photoaged skin, participants were treated
weekly three times for four consecutive weeks (12 treatments)
with an LED and sham light contralaterally in a split-face
design. Results from a microtopographic profilometry analy-
sis (PRIMOS reading) of rhytid depth and severity (Rz) and
reduction in skin roughness (Ra) are presented in Table 1.
Analysis of the results showed that the percent improvement
after treatment in Rz values was statistically different between
the LED-treated and control non-treated sides (Po0.0001).
LED treatment produced an Rz reduction in 94% of
participants, with the highest reduction in rhytids of 51%
noted on a female participant aged 46 years (S33). For
the non-treated side, Rz reductions were observed in 51%
of participants. The results from the LED-treated side
also revealed a statistically significant reduction in surface
roughness in comparison with the untreated control side
(Po0.0001), as measured by Ra. Overall, an improvement in
skin appearance after LED treatment was observed in 97%
of participants, with the highest benefit of 56% observed
on a woman aged 57 years (S29). For the untreated side,
improvements were observed in 46% of participants. The
participant’s age was not found to influence the effect of LED

treatment on Rz or Ra values. Figure 3 shows PRIMOS phase
shift black and white and color-coded microtopography
photographs before and after LED therapy of the periorbital
area for participant S2.

Skin textural enhancement in aged/photoaged participants

Clinical assessment of digital photographs taken before
treatment and after the last treatment were analyzed by three
blinded medical observers. According to the observers, an
improvement in at least one subtype of the Fitzpatrick
Classification System (FCS), used to evaluate the degree of
wrinkling (rhytids), was obtained in 85–90% (mean of 87%)
of participants after LED treatments. For the untreated side,
an improvement was observed in 25–63% of participants
(mean of 45%). Observer assessments revealed that the
degree of improvements in wrinkling after treatment was mild
to moderate. The analysis conducted on severity scores
showed that there was a significant difference between the
LED-treated and untreated sides for Observers 1 (Po0.0001)
and 3 (P¼ 0.001), but not according to Observer 2 (Table 2).
Results were not found to be influenced by the participant’s

Figure 2. Histological assessments of HRS. (a) Masson stain after LED

treatment on reconstructed skin (HRS38), underlining the presence of

dermal collagen (colored in blue) in the dermal portion. Keratinocytes found

in the epidermis and dermal fibroblasts are colored in red. (b) Fluorescent

immunostaining of HRS42 type I collagen located in the dermal portion

(red band pattern) after LED treatment. Nuclei are colored in blue for both

keratinocytes (round nuclei) and dermal fibroblasts (elongated nuclei).

No morphological changes were observed on HRS after LED treatments.

Scale bar indicates 50 mm.

Table 1. Microtopographic profilometry analysis

Percent improvement
post-treatment

Percentage of subjects
with improvement

LED-

treated Untreated P-value

LED-treated

(%)

Untreated

(%)

Ra 18.57±2.41 3.73±1.17 o0.0001 97 46

Rz 20.83±2.26 7.43±1.64 o0.0001 94 51

Values are mean±SEM.
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Figure 3. Reduction in rhytids and skin roughness with LED therapy.

Photograph depicts color-coded topography images before treatment (a) and

after LED treatment (c). Each color determines a specific depth with

darker areas indicating a deeper wrinkle surface. Black and white

photographs show skin texture and pore size for the pre-LED (b) and

post-LED treatment areas (d). All photographs are for S2 aged 38 years.
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age. The internal consistency between the observers’ findings
was deemed to be acceptable (Cronbach’s a¼0.615).
Clinical results for participant S2 are displayed in Figure 4.

Skin temperature steadiness during LED treatment

It has been reported that a mild increase in temperature (43 vs
371C) can induce a decrease in type I procollagen secretion
(Halper et al., 2005). Papillary dermis temperature was thus
monitored in our clinical study throughout LED exposure to
ensure that skin temperature was kept normal in order not to
hinder photobiochemical reactions associated with collagen
metabolism. Monitoring attested that physiological tempera-
ture was maintained at the treatment area during the entire
procedure. Temperature variations registered by thermo-
couple probes during LED treatment were stable or never
more than 0.51C (dermo-epidermal junction temperature of
33±0.51C).

LED therapy safety profile in humans

Adverse reactions were monitored throughout the study. LED
therapy was found to be well tolerated by all patients, with no
adverse effects or downtime reported during or after LED
treatment.

DISCUSSION
This study investigated the potential of 660 nm sequentially
pulsed LED treatments in the photoinduction of collagen

synthesis and MMP-1 modulation in humans. LED-induced
biochemical and histological changes in a 3-D HRS in vitro
model were first examined. A clinical study was then carried
out to assess in vivo the clinical correlates of this light
treatment on skin texture and appearance of individuals
with aged/photoaged skin, in whom collagen synthesis and
MMP-1 are known to be downregulated and upregulated,
respectively (Varani et al., 2000). Results from this study
provide evidence for the photobiomodulatory effects of
660 nm sequentially pulsed LED treatment.

We have previously developed a tissue-engineering
approach for the production of a biological HRS from
cultured human cells (Laplante et al., 2001). In this study,
we took advantage of this model for our in vitro study. The
use of this tissue-engineering method allowed the creation
of three differently aged HRS, which offered the unique
opportunity to test biological changes, such as type-1
collagen and MMP-1 production, after LED treatment on
age-defined skin. The stability of these constructs in culture
over time also permitted numerous consecutive LED treat-
ments to be applied. Results obtained from the three HRS
constructs tested demonstrated that 660 nm LED exposures
did not trigger histological changes; however, LED treatment
significantly amplified collagen production with a conco-
mitant decrease in collagenase (MMP-1) production. The
noticeable differences between our results and those of other
studies were the depth and range in collagen production
increase and MMP-1 reduction in an in vitro milieu capable
of dermal–epidermal communication comparable with that
in in vivo skin (Weiss et al., 2005; Lee et al., 2007). Interes-
tingly, LED treatments can induce similar changes in collagen
synthesis and MMP activity as those reported with retinoic
acid (Fisher and Voorhees 1998; Fisher et al., 1998), although
the mechanisms at play may be different.

The pattern of procollagen and MMP-1 production was
found to be cyclic. The observed cyclical pattern could result
from the capacity of HRS to express specific endogenous cell
signaling pathways, periodically turning the factory ‘‘on’’ and
‘‘off’’. This was seen in both treated and untreated specimens,
possibly reflecting the natural variations in procollagen and
MMP regulation. Hence, LED therapy did not seem to affect
the cycle per se but seemed to modulate the HRS intrinsic
ability to do so.

The HRS model used in this study emulates skin as a
complex tissue composed of two different compartments: the
epidermis made up mostly of keratinocytes and the under-
lying dermal matrix with fibroblasts as its major cellular

Pre Post

LED

Control

Figure 4. Improvements in skin appearance in aged/photoaged participants

with LED treatment. Digital photograph illustrates periorbital areas at

pre-treatment (a) and posttreatment (c) for the LED-treated side, and at

pre-treatment (b) and posttreatment (d) for the non-treated control area.

All photographs are for S2 aged 38 years.

Table 2. Observers’ assessment of improvement in the severity of wrinkles

Degree of improvement Percentage of subjects X1 point

LED-treated Untreated P-value LED-treated (%) Untreated (%)

Observer 1 1.35±0.11 0.25±0.07 o0.0001 90 25

Observer 2 0.90±0.07 0.70±0.10 NS 85 63

Observer 3 1.03±0.09 0.50±0.09 0.001 85 48

Values are mean±SEM; NS: non-statistically significant.
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components. The limitations of this model reside in the fact
that it does not contain melanocytes, Merkel cells and
Langerhans cells of the epidermis, skin appendages (hair and
glands), vascularization and innervation of the dermis, as
well as its hypodermis counterpart. More complex models
are currently under development. For example, a trilayered
skin substitute consisting of an epidermis, dermis, and an
adipocyte-containing hypodermis has recently been pro-
duced (Trottier et al., 2008). Future experiments with more
complex HRS models should allow extended investigations
into LED-related mechanisms.

Profilometry quantification confirmed a clinical improve-
ment pertaining to skin surface characteristics after 1 month
of LED treatment. Over 90% of participants showed a
reduction in rhytid depth and surface roughness measured
quantitatively by Rz and Ra PRIMOS profilometry after 12
LED treatments. Clinical improvement in wrinkles was
observed in 87% of participants, although one observer
reported no significant differentiation in wrinkling scores
between the treated and untreated sides. Some degree of
improvement was indeed noted on the untreated side in
the qualitative assessments. Although photographs were
randomly presented and the observers were blinded to the
details of the experiment, the fact that the LED-treated side
of the face was the right side in all participants may have
unblinded the study and biased observers. Given that an
improvement on the untreated side was also observed in the
quantitative assessments, however, suggests that the improve-
ment was genuine. The observed improvement on the
untreated side could be due, at least in part, to the fact that
participants were instructed on posttreatment skin care and
closely monitored by the clinical team, which might have
motivated them to take better care of their skin during the trial
period. There is also the possibility that, as the untreated side
was not covered during treatment on the controlateral side, it
benefited from a spill over- or a systemic effect of treatment.
Future studies with split-face designs should randomize
treatment allocation with the untreated side covered.

LED therapy seemed to be well tolerated, with no adverse
events or downtime reported, likely because of the absence
of thermal injury to the skin during treatment. From a clinical
perspective, the nonthermal characteristics of LED treatment
may yield a significant advantage over other treatment
methods, given that effective improvements in the appear-
ance of aged skin can be achieved without thermal damage
induced to skin with associated adverse effects. Additional
studies are, however, needed to evaluate if the clinical
improvements observed in this study are maintained over
time, as follow-up assessments were carried out over a
relatively short period of follow-up time (4 weeks). Our
results are in line with previous accounts of the effectiveness
of LED therapy in photorejuvenation with other light sources
in which effects were observed for up to 6 months follow-up
time points (Weiss et al., 2004, 2005; Bhat et al., 2005;
Russell et al., 2005; Goldberg et al., 2006; Baez and Reilly,
2007; Lee et al., 2007).

The induction of collagen synthesis by nonablative
rejuvenation procedures has been shown to occur largely in

the papillary and upper reticular dermis, forming the so-
called Grenz zone (Hardaway et al., 2002; Nelson et al.,
2002). Our results provide support for previous research
showing that light in the red spectrum, such as 660 nm,
allows for light penetration and absorption in the dermis and
through the entire papillary layer, enabling the stimulation
of collagen production (Simpson et al., 1998). The cascade
of events leading to collagen production is thought to
be initiated by the antenna molecule mitochondrial cyto-
chrome c oxidase (Karu and Kolyakov, 2005; Hamblin and
Demidova, 2006; Karu et al., 2005a, b). Absorbed light
converted to chemical kinetic energy would cause changes in
membrane permeability, improve signaling between mito-
chondria, nucleus and cytosol, lead to nitric oxide formation,
and increase oxidative metabolism to produce more ATP
(Karu, 1989; Morimoto et al., 1994; Yu et al., 1997; Zhang
et al., 2003), ultimately leading to the normalization of
cell activity, including increased collagen production and
MMP regulation.

To our knowledge, these are previously unreported data
on the regulation of skin collagen metabolism in vitro with
clinical correlates using a sequentially pulsed 660 nm LED
source. The HRS used in this study proved to be a good
preclinical model to test the effects of such light treatments on
human skin over a month, and permitted to investigate the
mechanism(s) responsible for the positive changes observed
in the skin of LED-treated humans. The characteristics of the
participants included in this trial, the study setting, the
treatment regimens tested, and the outcomes assessed are
similar to those encountered in day-to-day dermatology
practice. The results from this study thus support 660 nm
LED as a collagen-enhancement strategy that can be used
safely in a clinical setting. Yet, additional studies are needed
to evaluate whether 660 nm LED effects are maintained over
time. Further studies are also warranted to ascertain the
cellular processes involved.

IN VITRO STUDY MATERIALS AND METHODS
Cell culture media

Keratinocytes were grown in a complete DME-HAM medium: a

combination of Dulbecco–Vogt modification of Eagle’s medium

(DME) with Ham’s F12 in a 3:1 proportion (Invitrogen, Burlington,

Canada), supplemented with 5% Fetal Clone II serum (FCSII) (HyClone,

Logan, UT), 10 ng ml epidermal growth factor (Austral Biologicals, San

Ramon, CA), 24.3mg ml adenin (Sigma-Aldrich, Oakville, Canada),

5mg ml insulin (Sigma-Aldrich), 5mg ml transferrin (Roche Diagnostics,

Laval, Canada), 2� 10�9 M 3,30 50 triiodo-L-thyronin (Sigma-Aldrich),

0.4mg ml hydrocortisone (Calbiochem, La Jolla, CA), and antibiotics

100 IU ml penicillin G (Sigma-Aldrich) and 25mg ml gentamicin

(Schering, Pointe-Claire, Canada). Fibroblasts were cultured in DME

containing 10% fetal calf serum (HyClone) and antibiotics.

Cell isolation and culture

Skin specimens were collected from healthy women aged 38

(HRS38), 42 (HRS42), and 64 (HRS64) years, during reductive breast

surgery (HRS38 and HRS42) or face-lift (HRS64). Procedures for cell

isolation were initiated within 3 hours after surgery according to a

previously published method (Germain et al., 2001; Auger et al.,
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2002). Skin specimens were washed five times with a phosphate-

buffered saline supplemented with antibiotics. Specimens were then

cut into 3 mm wide strips and kept overnight at 4 1C in Hepes buffer

containing 500mg ml thermolysin. The epidermis was mechanically

separated from the dermis with forceps; keratinocytes were

dissociated from the epidermis through incubation of the epidermal

fragments under agitation at 371C for 30 minutes, with 0.05%

trypsin-0.1% EDTA in PBS. After trypsin inactivation (addition of

culture medium containing 10% serum and centrifugation), keratino-

cytes were expanded in the presence of irradiated 3T3 fibroblasts

in T75 flasks (BD Biosciences, Mississauga, Canada) and subse-

quently frozen until further use. Fibroblasts were dissociated from

the remaining dermis fragments after incubation in a colla-

genase H solution at 371C under agitation. After centrifugation, the

fibroblasts were also plated in T75 flasks for expansion and

subsequently frozen until further use.

Production of tissue-engineered HRS

The cells isolated from the healthy women aged 38, 42, and 64 years

were used to reconstruct HRS38, HRS42, and HRS64, respectively.

HRS were produced as previously described (Michel et al. 1999).

Briefly, fibroblasts (F38, F42, or F64) were cultivated in a fibroblast

culture medium containing 50 mg ml sodium ascorbate (Sigma-

Aldrich) for 4 weeks until cell sheets were formed. After peeling

the fibroblast sheets from the bottom of the dishes, two sheets were

superimposed, for a total of two sheets per HRS, and cultured for 1

week. After dermal equivalent maturation, keratinocytes (250,000

cells per cm2, between cellular passages 2 and 3) were seeded on

reconstructed stroma and cultured for 7 days in a keratinocyte

complete medium (containing 50 mg ml sodium ascorbate) under

submerged conditions. The HRS were then brought to the air–liquid

interface and cultivated in complete DME-HAM with 5% serum and

50 mg ml sodium ascorbate, without EGF, for an additional 4 weeks.

The culture medium was changed three times per week. Each

experimental condition was tested in triplicate on the three HRS

tested (HRS38, HRS42, and HRS64). All plastic ware for tissue

culture was procured from BD Biosciences.

LED and sham light treatments

Samples of the HRS replicates were exposed to the LED or sham light

source under a laminar flow hood. HRS were treated 11 times (T1 to

T11) over a 1-month period, treatments were performed three times

a week for 4 consecutive weeks, with only two treatments performed

in the fourth week. Cultures were then incubated at 371C (8% CO2).

Supernatants were collected before each treatment and after the last

treatment, and stored at �201C until assessed for type I procollagen

and MMP-1.

The LED technique involved the application of a 660-nm

wavelength delivered in a sequential pulsing mode at a power

density of 50 mW cm for a total fluence of 4 J cm, for a duration of

160 seconds (2m40 s) (LumiPhase-R, OPUSMED Inc. Montreal,

Canada). The pulsing patterns and time on and time off sequences

were as follows: Pulse width (time on) 500msec, pulse interval (time

off) 150 msec, four pulses per pulse train, and a pulse train interval of

1,550msec. The non-treated HRS samples were exposed to a sham

light for 160 seconds with a total fluence of 0 J cm.

During this study, a lot of care was taken to maintain a working

distance of 2.5 cm (±1 mm) away from the target surface during LED

therapy, as power density/light intensity—a key variable for optimal

photoinduction—is greatly influenced by the distance between the

light source and the surface of the skin (Hart and Cameron, 2005).

Measurements of the intensity (mW) of the LED light source emitting

at 660 nm (110 mA CW) were taken with a ph100-si (Gentec-eo,

Quebec, Canada) at every centimeter, up to a 10-cm distance away

from the light source. This was important to ensure that the proper

amount of photons was delivered to reach the cellular activation

(induction) threshold in the skin.

Type I collagen and MMP-1 determination

Human type I collagen was measured in cell culture supernatants of

the selected time period with the Protype I collagen C-peptide

enzyme immunoassay kit purchased from Takara Mirus Bio

(Madison, WI), according to the manufacturer’s instructions. MMP-1

levels were also measured using MMP-1 biotrak activity assay systems

according to the manufacturer’s instructions (Amersham Biosciences,

Baie D’Urfe, Canada).

Data analysis

As an indication of effect size to measure the direction and

magnitude of the treatment effect for each time point, Cohen’s d

was used. Cohen’s d was computed as follows: d is the difference in

group means divided by the pooled s.d. A standardized effect size

of 0.2 is considered small, 0.5 is considered medium, and 0.8 is

considered large (Cohen, 1988).

Histological analysis

After the last treatment, biopsies of untreated and LED-treated

reconstructed skin were fixed for at least 24 hours in a Bouin solution

(ACP, St Leonard, Canada) and embedded in paraffin.

Five-mm-thick cross-sections were stained with Masson’s trichrome.

Photographs were taken at the � 40 objective with a digital

camera (CoolSnap RS Photometrics, Roper Scientific, Munich,

Germany).

Indirect immunofluorescence microscopy

At the end of the treatment series, samples of the untreated and

LED-treated reconstructed skin were embedded and frozen in

OCT compound (Somagen, Edmonton, Canada). Four-mm-thick

cross-sections were fixed in cold acetone and further incubated with

mouse monoclonal anti-human type I collagen antibody (Chemicon,

Temecula, CA). The secondary antibodies (Chemicon) used were

rhodamine-conjugated goat anti-mouse IgG-IgM and goat anti-rabbit

IgG. Nuclei were stained blue with Hoechst 33258 (Sigma-Aldrich).

IN VIVO STUDY MATERIALS AND METHODS
Participant selection

Forty healthy patients with aged/photoaged skin (37 women and 3

men) with a mean age of 44.9 (33–62) years were recruited from the

Dr. Daniel Barolet Clinic in Montreal, Canada from September 2002

to December 2002 and tested between January 03 and April 03.

Inclusion criteria included patients with skin type I to III according to

the FCS (Fitzpatrick, 1988). At study entry, 15% of patients were skin

type I, 45% were skin type II, and 40% were skin type III. A total of

48% were deemed to present with mild, 38% with moderate, and

10% with a severe degree of wrinkles, according to the FSC for

degree of wrinkling (rhytids).
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Exclusion criteria comprised patients taking cortisone (predni-

sone), anticoagulant therapy, or any drug known to increase

photosensitivity. In addition, during the 12 months preceding the

study, patients were required not to have used isotretinoin

(Accutane) or applied topical steroids to the site to be treated.

Moreover, a previous laser or topical medication at the to-be-treated

site was not permitted. Patients gave written, informed consent

to participate in this trial in compliance with the US Code of

Federal Regulations dealing with the conduct of clinical studies

(21CFR including parts 50 and 56 with regard to informed consent

and IRB regulations). The study was conducted according to

Good Clinical Practice Guidelines and the principles of the

Declaration of Helsinki, and was approved by the Institutional

Review Board Services (Div. 1373737 Toronto, Canada). The

trial was registered with ClinicalTrials.Gov (ClinicalTrials.gov

Identifier: NCT00818246). The study flow chart is presented in

Figure 5.

Study design

This was a split-face single-blinded study to assess the efficacy of

LED treatment on overall skin appearance (rhytids depth and

texture—surface roughness) of the aged/photoaged periorbital area.

This study design allowed for within-participant assessments of

clinical effects. Assignment: The right periorbital area was desig-

nated to be the experimental side, and the left periorbital was used as

control (sham light). Blinding: The observers who performed the

clinical qualitative assessments on the basis of digital photographs

were blinded to the treatment regimen (LED-treated or untreated/

control side) and to the timing of the photographs (pre- or

posttreatment).

Study procedure

Participants were treated three times weekly for 4 consecutive weeks

(12 treatments) with the 660 nm-pulsed LED device on the

experimental periorbital area. LED treatments were administered

using the same parameters as those for the in vitro study (see In vitro

Study Materials and Methods). To maximize LED photoinduction, a

topical moisturizer without active ingredients was applied daily, as

dry skin is known to enhance skin surface reflectivity (Friedman

et al., 2002). To support photobiochemical reactions in the triggering

of gene-expression-enhanced collagen metabolism during LED

exposure, skin temperature should be kept normal, that is,

physiological (Halper et al., 2005). Therefore, monitoring papillary

dermis temperature with a needle probe (type-T thermocouple from

Omega, Montreal, Canada) during LED treatment was carried out.

The control side was exposed to a sham light for 160 seconds with a

total fluence of 0 J cm. No cooling method was used after exposure.

To avoid hiding periorbital skin, a well-circumscribed external

eyelid protector (Oculoplastik, Montreal, Canada) was worn to

protect the retina from direct illumination. Before returning home,

participants were instructed on posttreatment skin care, which

included applying a plain moisturizer on both sides of the face, sun

avoidance, and the use of a sunscreen (SPF 30).

Primary outcome measures

A topographical quantitative assessment was carried out for each

study participant using PRIMOS 3D surface topography (GFM,

Teltow, Germany) profilometry performing phase shift rapid

in vivo measurements of skin from the experimental and control

periorbital areas before treatment and 4 weeks after treatment. A

PRIMOS readings (PRIMOS 4 Software, GFM, Teltow, Germany)

star analysis was carried out, from a phase shift photograph, a

1.5 cm-diameter circular portion of the skin on the lateral cantus

area was cut into 12 equal segments, allowing depth calculation

of fine surface lines (peak and valley analysis) in that area and

quantification of skin surface roughness. The Ra value was

calculated from general surface roughness characteristics, pore

size and skin texture. The Rz value obtained for each participant was

Enrollment

Allocation

Follow-up
Lost to Follow-up: n=0

Discontinued: n=0

Analyzed
Qualitative assessment: n=40
Excluded from analysis: n=0

Analysis

Analyzed
Quantitative assessment: n=35

Excluded from analysis: n=5
Given reason: Impossibility to

match before and after
PRIMOS pictures

Meeting criteria: n=40

Allocated to intervention: n=40
Spilt-face study

Right side: LED treatment
Left side: Sham light treatment

Figure 5. Clinical study flow chart.
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estimated from average peak and valley measurement data to

quantify rhytid depth and severity. Pre- and posttreatment surface

topography measurements were taken to precisely quantify clinical

improvements.

Secondary outcome measures

A clinical qualitative assessment was carried out by three blinded

medical observers through the evaluation of digital photographs

(Canon Dual Flash E2, Mississauga, Canada) of the experimental and

control periorbital areas taken pre-treatment and 4 weeks posttreat-

ment for each participant. Each photograph was taken maintaining

identical ambient lighting, pose, and camera angles. To avoid bias in

clinical appraisal, sets of photographs for the treated and untreated

sides of the face were randomly presented to the observers who were

blinded to the details of the experiment. The photographs were

analyzed for clinical improvement using the FCS subtype scale for

degree of wrinkling (rhytids). Their assessment was rated on a five-

point scale and scored as follows: 0¼ none, 1¼mild, 2¼moderate,

3¼ good, 4¼ excellent. Adverse effects were monitored over the

entire course of the study.

Data analysis

Sample sizes and power calculations were generated according to

the primary outcome measures of the study. To have a 98% chance

of detecting as significant (at the two-sided 5% level) a 10%

difference between the treated and untreated/control sides in the Ra

and Rz posttreatment improvement, with an assumed s.d. of 10, 33

participants were required. To account for an 80% per protocol

completion rate, the planned number of patients to be enrolled was 40.

The primary outcome variables were the percent improvement

posttreatment for the Ra and Rz values measured 4 weeks

posttreatment. The primary outcome analysis was conducted on

results from 35 participants. The data from five participants were

removed from the quantitative assessment analysis because of the

fact that it was not possible to match the before and after PRIMOS

data digital color-coded photographs. The secondary clinical

outcome variable was the medical observers’ combined gain in

the FCS score for degree of wrinkling 4 weeks after treatment.

Secondary outcome analysis was conducted on the results

of the total sample of participants (n¼ 40). For the primary and

secondary outcome variables, an analysis of covariance was used to

assess statistical differences between the LED-treated and untreated

sides, taking into account age as the covariate. Main effects and two-

way interactions were incorporated into the statistical model.

Tukey’s HSD test was used to assess pairwise comparisons.

Cronbach’s a was calculated to assess internal consistency between

the observers’ assessments. P-values were considered significant

at Pp0.05.
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